5 research outputs found

    The Liver Tumor Segmentation Benchmark (LiTS)

    Full text link
    In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094

    The Liver Tumor Segmentation Benchmark (LiTS)

    Full text link
    In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LITS) organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2016 and International Conference On Medical Image Computing Computer Assisted Intervention (MICCAI) 2017. Twenty four valid state-of-the-art liver and liver tumor segmentation algorithms were applied to a set of 131 computed tomography (CT) volumes with different types of tumor contrast levels (hyper-/hypo-intense), abnormalities in tissues (metastasectomie) size and varying amount of lesions. The submitted algorithms have been tested on 70 undisclosed volumes. The dataset is created in collaboration with seven hospitals and research institutions and manually reviewed by independent three radiologists. We found that not a single algorithm performed best for liver and tumors. The best liver segmentation algorithm achieved a Dice score of 0.96(MICCAI) whereas for tumor segmentation the best algorithm evaluated at 0.67(ISBI) and 0.70(MICCAI). The LITS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.Comment: conferenc

    Supervised feature selection by ranking to process similarity queries in medical images

    No full text
    Obter uma representação sucinta e representativa de imagens médicas é um desafio que tem sido perseguido por pesquisadores da área de processamento de imagens médicas com o propósito de apoiar o diagnóstico auxiliado por computador (Computer Aided Diagnosis - CAD). Os sistemas CAD utilizam algoritmos de extração de características para representar imagens, assim, diferentes extratores podem ser avaliados. No entanto, as imagens médicas contêm estruturas internas que são importantes para a identificação de tecidos, órgãos, malformações ou doenças. É usual que um grande número de características sejam extraídas das imagens, porém esse fato que poderia ser benéfico, pode na realidade prejudicar o processo de indexação e recuperação das imagens com problemas como a maldição da dimensionalidade. Assim, precisa-se selecionar as características mais relevantes para tornar o processo mais eficiente e eficaz. Esse trabalho desenvolveu o método de seleção supervisionada de características FSCoMS (Feature Selection based on Compactness Measure from Scatterplots) para obter o ranking das características, contemplando assim, o que é necessário para o tipo de imagens médicas sob análise. Dessa forma, produziu-se vetores de características mais enxutos e eficientes para responder consultas por similaridade. Adicionalmente, foi desenvolvido o extrator de características k-Gabor que extrai características por níveis de cinza, ressaltando estruturas internas das imagens médicas. Os experimentos realizados foram feitos com quatro bases de imagens médicas do mundo real, onde o k-Gabor sobressai pelo desempenho na recuperação por similaridade de imagens médicas, enquanto o FSCoMS reduz a redundância das características para obter um vetor de características menor do que os métodos de seleção de características convencionais e ainda com um maior desempenho em recuperação de imagensObtaining a representative and succinct description of medical images is a challenge that has been pursued by researchers in the area of medical image processing to support Computer-Aided Diagnosis (CAD). CAD systems use feature extraction algorithms to represent images. Thus, different extractors can be evaluated. However, medical images contain important internal structures that allow identifying tissues, organs, deformations and diseases. It is usual that a large number of features are extracted the images. Nevertheless, what appears to be beneficial actually impairs the process of indexing and retrieval of images, revealing problems such as the curse of dimensionality. Thus, it is necessary to select the most relevant features to make the process more efficient and effective. This dissertation developed a supervised feature selection method called FSCoMS (Feature Selection based on Compactness Measure from Scatterplots) in order to obtain a ranking of features, suitable for medical image analysis. Our method FSCoMS had generated shorter and efficient feature vectors to answer similarity queries. Additionally, the k-Gabor feature extractor was developed, which extracts features by gray levels, highlighting internal structures of medical images. The experiments performed were performed on four real world medical datasets. Results have shown that the k-Gabor boosts the retrieval performance, whereas the FSCoMS reduces the subsets redundancy to produce a more compact feature vector than the conventional feature selection methods and even with a higher performance in image retrieva

    The Liver Tumor Segmentation Benchmark (LiTS)

    No full text
    In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094.ISSN:1361-8415ISSN:1361-842
    corecore